首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   24篇
  国内免费   2篇
测绘学   4篇
大气科学   20篇
地球物理   62篇
地质学   51篇
海洋学   12篇
天文学   16篇
自然地理   17篇
  2023年   1篇
  2021年   10篇
  2020年   14篇
  2019年   17篇
  2018年   9篇
  2017年   17篇
  2016年   11篇
  2015年   13篇
  2014年   14篇
  2013年   13篇
  2012年   2篇
  2011年   2篇
  2010年   8篇
  2009年   6篇
  2008年   8篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1997年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有182条查询结果,搜索用时 515 毫秒
91.
Exogenous delivery of amino acids and other organic molecules to planetary surfaces may have played an important role in the origins of life on Earth and other solar system bodies. Previous studies have revealed the presence of indigenous amino acids in a wide range of carbon‐rich meteorites, with the abundances and structural distributions differing significantly depending on parent body mineralogy and alteration conditions. Here we report on the amino acid abundances of seven type 3–6 CK chondrites and two Rumuruti (R) chondrites. Amino acid measurements were made on hot water extracts from these meteorites by ultrahigh‐performance liquid chromatography with fluorescence detection and time‐of‐flight mass spectrometry. Of the nine meteorites analyzed, four were depleted in amino acids, and one had experienced significant amino acid contamination by terrestrial biology. The remaining four, comprised of two R and two CK chondrites, contained low levels of amino acids that were predominantly the straight chain, amino‐terminal (n‐ω‐amino) acids β‐alanine, and γ‐amino‐n‐butyric acid. This amino acid distribution is similar to what we reported previously for thermally altered ureilites and CV and CO chondrites, and these n‐ω‐amino acids appear to be indigenous to the meteorites and not the result of terrestrial contamination. The amino acids may have been formed by Fischer–Tropsch‐type reactions, although this hypothesis needs further testing.  相似文献   
92.
Regimes are useful tools for characterizing the seasonal behaviour of river flow and other hydroclimatological variables over an annual cycle (hydrological year). This paper develops and tests: (i) a regime classification method to identify spatial and temporal patterns in intraannual hydroclimatological response; and (ii) a novel sensitivity index (SI) to assess river flow regimes' climatic sensitivity. The classification of regime shape (form) and magnitude considers the whole annual cycle rather than isolating a single month or season for analysis, which has been the common approach of previous studies. The classification method is particularly useful for identifying large‐scale patterns in regimes and their between‐year stability, thus providing a context for short‐term, small‐scale process‐based research. The SI provides a means of assessing the often‐complex linkages between climatic drivers and river flow, as it identifies the strength and direction of associations between classifications of climate and river flow regimes. The SI has the potential for application to other problems where relationships between nominal classifications require to be found. These techniques are evaluated by application to a test data set of river flow, air temperature and rainfall time‐series (1974–1999) for a sample of 35 UK river basins. The results support current knowledge about the hydroclimatology of the UK. Although this research does not seek to yield new, detailed physical process understanding, it provides perspective at large spatial and temporal scales upon climate and flow regime patterns and quantifies linkages. Having clearly demonstrated the regime classification and SI to be effective in an environment where the hydroclimatology is relatively well known, there appears to be much to gain from applying these techniques in parts of the world where patterns and associations between climate and hydrology are poorly understood. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
93.
94.
High-temperature carbonate minerals have been observed in association with sulfide minerals below the platiniferous Johns-Manville (J-M) reef of the Stillwater Complex in a stratigraphic section that has been previously shown to be characterized by unusually Cl-rich apatite. The carbonate assemblage consists of dolomite with exsolved calcite in contact with sulfide minerals: chalcopyrite and pyrrhotite in the Peridotite Zone; and pyrrhotite with pentlandite, pyrite and chalcopyrite in Gabbronorite Zone I of the Lower Banded Series. A reaction rim surrounds the carbonate–sulfide assemblages, showing an alteration of the host orthopyroxene to a more calcium-enriched, Fe-depleted pyroxene. The calcite–dolomite geothermometer yields a minimum formation temperature as high as 950 °C for the unmixed assemblages. Iron and manganese concentrations exceed the range seen in carbonatite and mantle xenolith carbonates and are distinctly different from the nearly pure end-member carbonates associated with greenschist-grade (and lower) assemblages (e.g., carbonate veins in serpentinite) that occur locally throughout the complex. The association of high-temperature carbonates with sulfides beneath the J-M reef supports the hydromagmatic theory which involves a late-stage chloride–carbonate fluid percolating upwards, dissolving PGE and sulfides and redepositing them at a higher stratigraphic level. Characterization of the processes which form strategically important metal deposits, such as the J-M reef of the Stillwater Complex and the analogous Merensky reef of the Bushveld Complex in South Africa, could potentially lead to better exploration models and, more broadly, a deeper understanding of the cooling and compositional evolution of large bodies of ultramafic and mafic magma and of carbonatites, on both a local and a regional scale.  相似文献   
95.
96.
Increasing river temperatures are a threat to cold water species including ecologically and economically important freshwater fish, such as Atlantic salmon. In 2018, ca. 70% of Scottish rivers experienced temperatures which cause thermal stress in juvenile salmon, a situation expected to become increasingly common under climate change. Management of riparian woodlands is proven to protect cold water habitats. However, creation of new riparian woodlands can be costly and logistically challenging. It is therefore important that planting can be prioritized to areas where it is most needed and can be most effective in reducing river temperatures. The effects of riparian woodland on channel shading depend on complex interactions between channel width, orientation, aspect, gradient, tree height and solar geometry. Subsequent effects on river temperature are influenced by water volume and residence time. This study developed a deterministic river temperature model, driven by energy gains from solar radiation that are modified by water volume and residence time. The resulting output is a planting prioritization metric that compares potential warming between scenarios with and without riparian woodland. The prioritization metric has a reach scale spatial resolution, but can be mapped at large spatial scales using information obtained from a digital river network. The results indicate that water volume and residence time, as represented by river order, are a dominant control on the effectiveness of riparian woodland in reducing river temperature. Ignoring these effects could result in a sub-optimal prioritization process and inappropriate resource allocation. Within river order, effectiveness of riparian shading depends on interactions between channel and landscape characteristics. Given the complexity and interacting nature of controls, the use of simple universal planting criteria is not appropriate. Instead, managers should be provided with maps that translate complex models into readily useable tools to prioritize riparian tree planting to mitigate the impacts of high river temperatures.  相似文献   
97.
98.
Climate change is altering river temperature regimes, modifying the dynamics of temperature‐sensitive fishes. The ability to map river temperature is therefore important for understanding the impacts of future warming. Thermal infrared (TIR) remote sensing has proven effective for river temperature mapping, but TIR surveys of rivers remain expensive. Recent drone‐based TIR systems present a potential solution to this problem. However, information regarding the utility of these miniaturised systems for surveying rivers is limited. Here, we present the results of several drone‐based TIR surveys conducted with a view to understanding their suitability for characterising river temperature heterogeneity. We find that drone‐based TIR data are able to clearly reveal the location and extent of discrete thermal inputs to rivers, but thermal imagery suffers from temperature drift‐induced bias, which prevents the extraction of accurate temperature data. Statistical analysis of the causes of this drift reveals that drone flight characteristics and environmental conditions at the time of acquisition explain ~66% of the variance in TIR sensor drift. These results shed important light on the factors influencing drone‐based TIR data quality and suggest that further technological development is required to enable the extraction of robust river temperature data. Nonetheless, this technology represents a promising approach for augmenting in situ sensor capabilities and improved quantification of advective inputs to rivers at intermediate spatial scales between point measurements and “conventional” airborne or satellite remote sensing.  相似文献   
99.
100.
Because of the importance of snow for river discharge in mountain regions, hydrological research often focuses on seasonally snow-covered zones. However, in many basins the majority of the land surface area is intermittently snow-covered. Discharge monitoring in these areas is less common, so their contributions to downstream rivers remain largely unknown. We evaluated hydrological differences between three intermittently snow-covered (mean annual Jan 1–Jul 3 snow persistence <60%) and two seasonally snow-covered headwater catchments in the Colorado Front Range. We compared water balance variables to evaluate how and why discharge differs between the snow zones and estimated the relative contributions from each snow zone to regional river discharge. We focused on water years 2016–2019 and used a combination of in situ sensors and regional climate datasets. Annual discharge from the intermittent snow zone was low for all three catchments (10–77 mm), despite covering a wide range in annual snow persistence (25%–64%), whereas annual discharge from the seasonal snow zone was up to 73 times higher. Soil moisture in the seasonal snow zone was above field capacity for longer periods of time than in the intermittent snow zone, and the intermittent snow zone was uniquely subject to soil freezing (up to 102 days per year). For most of the year, potential evapotranspiration exceeded rainfall and snowmelt inputs in the intermittent snow zone, but was lower than rainfall and snowmelt inputs in the seasonal snow zone. This is likely a primary driver of the differences in soil moisture and discharge for catchments with a seasonal versus intermittent snow cover. Despite the large difference in discharge between these two snow zones, the intermittent snow zone contributed about a quarter of the discharge in the regional river, highlighting the importance of studying discharge generation across all elevations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号